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Vortex lattice structures in Rashba noncentrosymmetric superconductors in magnetic fields parallel to the
basal plane �H�c� are examined based on the BCS-like Hamiltonian and the resulting Ginzburg-Landau
functional. Due to the momentum-dependent anisotropy of the Zeeman effect induced by the broken inversion
symmetry, the vortex lattice in higher fields generally shows some unidirectional modulation of Fulde-Ferrell-
Larkin-Ovchinnikov type orienting in the plane perpendicular to H. However, the direction of the modulation
and the lattice structure depend significantly on the underlying pairing symmetry: when the mixing between
spin singlet and triplet pairing components is negligible, the resulting modulated structure tends to have
reflection symmetry, while the vortex lattice in systems with a significant singlet-triplet mixing has no reflec-
tion symmetry in most cases. The latter result implying the presence in real materials of two degenerate
orientations of the lattice structure separated by domain walls may be relevant to the extremely low-magnetic
decay rate observed in CePt3Si.
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I. INTRODUCTION

The Pauli paramagnetism has crucial effect on supercon-
ducting vortex states. Reflecting the pictures1–3 expected in
the vortex-free �Pauli� limit, it tends to change the character
of the mean-field superconducting transition occurring on the
depairing field Hc2�T� from the conventional second order
into a first order one4 and induces an additional spatial
modulation4,5 as a reflection of a Fulde-Ferrell-Larkin-
Ovchinnikov �FFLO� state in the Pauli limit. Further, such a
spatial variation in the pair field, i.e., superconducting order
parameter, due to the vortices and the FFLO modulation can
also induce a parity mixing6,7 in the vortex state. In the or-
dinary superconductors with inversion symmetry, however,
these effects are quite weak, and, in particular, it is not ex-
pected that the field-induced parity mixing6,7 changes the
vortex phase diagram qualitatively. Besides this, the effects
of the paramagnetic depairing on the vortex lattice structure
have not been discussed until recently. It has been found8

that, in systems where the paramagnetic effect is strong
enough, it weakens anisotropy in the vortex lattice structure
reflecting the pairing symmetry or the band structure and
stabilizes the isotropic triangular lattice structure.

In this paper, we study possible relations between the
pairing symmetry and the vortex lattice structure in noncen-
trosymmetric superconductors with spin-orbit coupling of
Rashba type in magnetic fields parallel to the basal plane
�H�c�. It is found that, in contrast to the above-mentioned
consequences in centrosymmetric superconductors with in-
version symmetry, spatial modulations induced by the para-
magnetic depairing and a field-induced parity mixing occur
even for relatively lower values of the Maki parameter9

�2Horb�0� /HP�0�, and that the vortex lattice structure in
Rashba superconductors strongly depends upon the details of
the orbital component of the Cooper pairing state, where
Horb�0� and HP�0� are the orbital and Pauli limiting fields
at zero temperature, respectively. The main origin of these
intriguing effects is an anisotropic Zeeman energy for quasi-
particles stemming from the antisymmetric spin-orbit cou-

pling �ASOC� peculiar to noncentrosymmetric superconduct-
ors. This ASOC is expressed as an additional term

Hsoc = �
k,�,�

ck,�
† �gk · ��,�ck,�, �1�

in the electronic Hamiltonian, where � is the energy scale
measuring the magnitude of ASOC, and ck,� is the annihila-
tion operator of conduction electron with momentum k and
spin projection �. The type of ASOC is defined by the vector
gk corresponding to the Fourier transform of the ASOC, and,
in Rashba superconductors, it can be expressed as �k
� ẑ� /kF, where kF is the Fermi wave number, and the c-axis
corresponds to the z direction. Due to this term, the quasi-
particle band of our interest in the normal state is split into
two pieces.10 The strength of ASOC is measured by the di-
mensionless quantity

�N �
N2 − N1

N1 + N2
�

���
EF

, �2�

expressing a normalized difference between the density of
states on the split two bands, N1 and N2. Hereafter, each
Fermi surface �FS� or band will be specified by the indices
a=1 and 2. Through the present paper, the ideal limit �N
→0 corresponding to the limit of large band width �EF
→�� is often considered in order to understand physical ori-
gins of structural changes in the vortex lattice. As a result of
the coupling in the spin space between the ASOC and the
original Zeeman terms, the quasiparticle Zeeman energy on
the split FSs becomes k dependent. Further, we focus in this
article on noncentrosymmetric superconductors satisfying
the condition11

max�T,�H�	 �	 EF, �3�

where �H is the Zeeman energy in centrosymmetric case.
Under this condition, the Zeeman energy in noncentrosym-
metric materials becomes highly anisotropic in the momen-
tum space so that the paramagnetic depairing is ineffective in
H �c,11 where other high-order corrections in �H /� were ne-
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glected. This ASOC-induced anisotropy in the Zeeman en-
ergy makes emergence of modulated vortex states in Rashba
superconductors easier compared with that in centrosymmet-
ric systems.

Before proceeding further, we introduce two key param-
eters for determining the type of modulations in vortex states
in Rashba superconductors. One is �N defined in Eq. �2�.
However, we note that, as indicated in Fig. 1�b�, a modula-
tion induced by the paramagnetic depairing is expected even
in ��N�→0 limit. The other is a parameter measuring close-
ness between the most attractive singlet- and triplet-pairing
states and will be expressed in the form

�w =
2�N1 + N2�

�w−1�tt − �w−1�ss
, �4�

where wss �wtt� is the strength of attractive interaction in the
most attractive pairing state in singlet �triplet� channels. In
the limiting case with just a single-pairing state, ��w� van-
ishes, while it is divergent when both of the two pairing
channels equally contribute to superconductivity. In the latter
case, only one of two FSs contributes to the pairing. Then,
the pure orbital-limiting case is reached, because a field-
induced displacement of the only FS participating in super-
conductivity does not affect the pairing itself 	see Fig. 1�b�
.

To clarify why a state modulating in the plane perpendicu-
lar to H tends to occur more easily compared with in the
centrosymmetric case, the h-t phase diagrams 	Fig. 2�a�
 in
the centrosymmetric case and 	Fig. 2�b�
 in Rashba case in
�N→0 limit are compared with each other in Fig. 2, where
t=T /Tc, and the normalized field h will be defined in the
ensuing sections. For simplicity, the possibility4 of the first
order Hc2 transition and of a modulation parallel to H in Fig.
2�a� is neglected here. Between the Figs. 2�a� and 2�b�, the
only difference in the used Hamiltonian is the Zeeman en-
ergy term: In Fig. 2�a�, the ordinary isotropic Zeeman energy
�H ·� is used, where � denotes the spin projection, and the
modulated state, �A� and �B�, corresponding to the FFLO
state in the Pauli limit appears in higher fields and is sepa-
rated by a first order transition occurring on the red curve
from the conventional triangular lattice �C�. On the other
hand, in Fig. 2�b�, the Zeeman energy is influenced by Hsoc

and takes the form �H · �k̂� ẑ�. Due to this anisotropy in the
momentum space of the Zeeman effect, the overall effect of
the paramagnetic depairing is weakened in the noncen-
trosymmetric case, as can be seen from the relative enhance-
ment of Hc2 and the narrower FFLO region with the structure
�A� in Fig. 2�b�. However, modulated vortex states, the in-
termediate states �B� and �C�, tend to occur in Fig. 2�b� due

�

���

���

FIG. 1. �Color online� Fermi surfaces �FSs� in a magnetic field
of �a� a centrosymmetric superconductor and �b� a Rashba noncen-
trosymmetric one. The colored dots indicate partners of Cooper
pairings on the FSs. In the case �b� satisfying Eq. �3�, each Cooper
pair is formed on the same FS, and the paramagnetic depairing is
effective only through the relative displacement of the two FSs of
which the magnitude is 2Q0=2�H /vF �see sec.I�. In the limit in
which one of the two FSs is irrelevant to superconductivity, such an
FS-displacement induced by the Zeeman effect is trivial and re-
duces to the orbital-limited case.

��� ���

FIG. 2. �Color online� Typical h-t phase diagrams of �a� a centrosymmetric superconductor and �b� a Rashba noncentrosymmetric one in
�N→0 limit following from the present theory, where h and t are normalized field and temperature, respectively. Each blue curve denotes
the Hc2�T� curve, while each red curve is a first order structural transition �FOST� between different structures of the vortex lattice. In �a�,
the possibility of a discontinuous Hc2 transition and an FFLO modulation parallel to the field was neglected to make comparison between �a�
and �b� easier. Insets: The images �A�–�D� in each figure are real space patterns of the amplitude of the pair field in the x-z plane at each �h , t�
below Hc2 curve. The energy gap nearly vanishes in the darkest regions.
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to the momentum-dependent Zeeman energy term. That is,
contrary to the centrosymmetric case with isotropic Zeeman
energy, a modulated vortex state can be expected to occur in
Rashba superconductors even if the paramagnetic depairing
effect is so weak that the conventional FFLO-like modulated
state �A� does not appear. In fact, this is the basic reason
why, as will be shown below, various spatially-modulated
states can occur dependent on the pairing symmetry in
Rashba superconductors.

It should be stressed that the spatially-modulated states,
�B� and �C� in Fig. 2�b� in intermediated fields, appear irre-
spective of �N and hence, is not relevant to the helical phase
modulation12,13 argued to occur in the vortex-free situation in
Rashba superconductors. The phase modulation is hidden in
the vortex states in Rashba case and merely appears as an
anisotropy orienting the direction of the modulated structure.
However, the helical phase modulation is observable in non-
centrosymmetric superconductors of cubic type and should
be detected as a local and transverse magnetization.14

In Sec.II, the microscopic basis of our calculation is ex-
plained. After deriving the Ginzburg-Landau �GL� free-
energy functional, results on phase diagrams in the pure sin-
glet or pure triplet case are shown and discussed separately
for a couple of pairing states in Sec.III. In the next section,
the analysis is extended to the case with a singlet and triplet
mixing, and discussions on relevance of the present results to
real systems are given in Sec.V.

II. ELECTRONIC HAMILTONIAN

We start from the following electronic Hamiltonian

Hel = Hsingle + Hint, �5�

where

Hsingle = �
k,s1,s2

ck,s1

† �
k�s1,s2
+ 	��g��k + �BH�
����s1,s2

�ck,s2

�6�

is the kinetic energy Hamiltonian accompanied by Hsoc and
the bare Zeeman term, ck,s

† is the creation operator of a con-
duction electron with the wave vector k and the spin index s,
�H the magnitude of the bare Zeeman energy, H= �H�, 
k is
the bare dispersion of conduction electrons defined with no
ASOC, ����s1,s2

is a Pauli matrix, and gk=k� ẑ /kF �see
Sec.I�. At the present stage, the orbital effect of the magnetic
field was neglected in Eq. �6�.

Throughout this paper, our calculation is performed
within models based on the quasi two-dimensional �Q2D�
dispersion of quasiparticle energy


k =
1

2m
�kx

2 + ky
2� + J	1 − cos�k̃z�
 , �7�

where k̃z�kzd, and d is the period in the z �or c� direction. In
most of real tetragonal noncentrosymmetric materials, the
main FS seems to be an ellipsoid. However, effects of dis-
crete layer structure in the original Q2D model are not con-
sidered hereafter by assuming d	�z�0� so that d does not

appear in the resulting GL functional, and, under this simpli-
fication, the GL functional for the Q2D FS is equivalent to
that of the ellipsoidal FS, where ���0���=x ,y ,z� is the zero
temperature coherence length in the � direction. Then, the
only parameter characterizing FS effects is the anisotropy
parameter  between the coherence lengths, which is given

in terms of J̃�J /
F by

 =
�x�0�
�z�0�

=�vx
2�

vz
2�

=
2�1 − J̃

�J̃
. �8�

For this FS, the average of a quantity f�v� over the mo-
mentum on the FS is given by

f�v�� = �
−�

� dk̃z

2�
�

0

2� d�k

2�
f�v� ,

vx = vF
�1 − J̃�1 − cos k̃z�cos �k,

vy = vF
�1 − J̃�1 − cos k̃z�sin �k,

vz = Jd sin k̃z, �9�

where �k=tan−1�ky /kx�. Hereafter, we assume kFd=� in or-
der to merely reduce the number of inessential material pa-
rameters.

The interaction Hamiltonian takes the following generic
form

Hint =
1

V
�

p,k1,k2

W��,��k1,k2�

�ck1+p/2,�
† c−k2+p/2,�

† c−k2+p/2,�ck1+p/2,, �10�

where the interaction potential W��,��k1 ,k2� may be ex-
pressed as

W��,��k1,k2� = −
1

2 �
i,j=s,t

wij	�i
†�k1�
��	� j�k2�
� �11�

with �s�k�=i�y�̂k, �t�k�=i��y��� · �gk���̂k, where �̂k ex-
presses a normalized pairing function of the dominant com-
ponent in the spin-singlet channel, and the so-called d vector
of the spin-triplet component was replaced in �t by gk based
on the inequality �3�.11 Further, ô denotes the unit vector
parallel to o. Hereafter, we will focus on the case in which
both of the singlet �s� and triplet �t� channels are attractive,
and the matrix wi,j �i , j=s and t� is positive definite.

Due to ASOC, Hsing is not diagonalized via the spin
states, and the following unitary transformation is needed to
diagonalize it:

U0
†�k��ck,↑

ck,↓
� = � fk,1

fk,2
� , �12�

where f is the field operator of the resulting quasiparticles,
and
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U�k� =
1 + i�sin �k�y − cos �k�x�

�2
. �13�

Then, Hsingle is represented in terms of quasiparticle states
fk,a with two split FSs

Hsingle = �
k

�
a=1,2

fk,a
† Ek,afk,a, �14�

where

Ek,a = 
k + �− 1�a+1��gk + �H� . �15�

The quasiparticle Green’s function close to FS a is

Ga�k, i�� �
1

i� − �a + �− 1�a�H · ĝk
, �16�

where �a is the single particle energy measured from the FS
a, and ĝk=gk / �gk�. Throughout this paper, the field configu-
ration H � ŷ is assumed in which the Pauli paramagnetism is
effective, and the H � ẑ �H �c� configuration in which the Zee-
man term vanishes will not be considered.

Correspondingly, the interaction Hamiltonian is expressed
in the form

Hint = −
V

2 �
p

�
i,j=s,t

wij��p
�i��†�p

�j�, �17�

where the pair-field operators take the form

�p
�s� = − �

k

1

V �
a=1,2

�̂ke	i�− 1�a+1�k
f−k+p/2,afk+p/2,a �18�

�p
�t� = �

k

�gk�
V �

a=1,2
�̂ke	i���a+1�−�− 1�a�k�
f−k+p/2,afk+p/2,a.

�19�

III. SINGLE PAIRING CASE

First, let us start from explaining our results in pure sin-
glet cases where wtt=wst=wts=0. The following results re-
main essentially valid for the corresponding triplet-only
cases. In this section, we consider the cases with �i� a full gap

�̂k=1, �ii� horizontal-line gap nodes �̂k=�2cos�2k̃z�, and

�iii� vertical-line gap nodes �̂k=�2cos�2�k�. The cases �i�
and �iii� correspond to the ordinary s-wave pairing and
dx2−y2-pairing ones, respectively, while a pairing state15 pro-
posed for CeRhSi3 �Ref. 16� and CeIrSi3 �Ref. 17� corre-
sponds to the case �ii�.

According to the familiar Hubbard-Stratonovich
transformation,18 the quadratic term of the GL functional is
given by

F2
�s� =� d3r� 1

wss
��s�2 − �

a=1,2
�s

�K2
�a�����s�

= N� d3r�s
�� 1

Nwss
− �

�c

d�
f���

2 �
�=�1

��̂k�2

�	cos��vxQ0� − i�N sin��vxQ0��


�exp�− i��v · �����s, �20�

where

f��� =
2�T

sinh�2�T��
, �21�

N=N1+N2, and Q0=2�H /vF is the familiar modulation
wave number of the vortex-free FFLO state in centrosym-
metric case in low T limit.2,3 In writing Eq. �20�, the quantity

Q0 /�1− J̃�1−cos k̃z� was simply expressed as Q0 by assum-

ing a nearly cylindrical FS with a small J̃ ��1�. Validity of
this treatment will be explained in relation to Fig. 3 and also
in Sec.IV. The kernel K2

�a� is expressed in terms of Ga�k , i
�
by

K2
�a���� = T�



�

k
��̂k�2Ga�k, i
�Ga�− k + �,− i
�

=
Na

2
�
�c

�

d�f��� �
�=�1

��̂k�2

�exp�− i��v · 	� + �− 1�aQ0x̂
�� , �22�

where �=−i�+2eA is the gauge-invariant operator for Coo-
per pairs, and �a is the normal quasiparticle energy measured
from the FS a in zero field.

Due to the gauge coupling through �, the pair field �s�r�
will be expanded via basis functions of Landau levels �LLs�.
Before processing the above expression further, the corre-
sponding LL basis function �n�z ,x �0� in the gauge A=Hzx̂
will be first determined following the conventional manner
of incorporating the anisotropy  in the low-field GL
region:19 The exponential operator in Eq. �22� is rewritten in
terms of the identity eA+B=e	A,B
/2eAeB with a constant 	A ,B

as

exp�− i�v · �� = exp����+ − ����−�

= exp�− ���2�2/2�exp����+�exp�− ����−� ,

�23�

where

��
1

�2rH

�1/2vz − i−1/2vx� �24�

and
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�� =
rH

�2
�1/2�x� i−1/2�z� �25�

are the creation and annihilation operators of LLs acting on
the LL basis functions �n�z ,x �0�, where rH=1 /�2eH is the
averaged vortex spacing originating from the flux quantiza-
tion. Then, the basis functions take the form

�n�z,x�0� = N0
�− 1�n

�2nn!
�
m

Hn�1/2

rH
�z + mkrH

2 ��
� exp�imkx −



2rH
2 �z + mkrH

2 �2

+
i

2
�mkrH�2cot �� , �26�

where Hn�w� implies the Hermite polynomial. Under a given
superposition of LLs, the structure of a vortex lattice is de-
termined by the two parameters k and �. In the familiar iso-
tropic triangular lattice, we have k�=�31/2� /rH and �
=tan−1��3 /�. More generally, any basis function �n�z ,x �
−z0ẑ� in the gauge A=Hzx̂ satisfies

�n�z − z0,x�0� = eiz0x/rH
2
�n�z,x�− z0ẑ� , �27�

�n�z,x�− z0ẑ� =
1

�n!
��+�n�0�z,x�− z0ẑ� . �28�

For later convenience, the following formula8 for �n�z ,x �0�
will be given here:

exp�i�v · ���n�z,x�0�

=
exp�− ����2/2�

�n!
���� −

�

������
n

� exp��2�2/2��0�z + �2−1rH��,x�0� . �29�

Using �n�z ,x �0�, the “imaginary” term �sin���vxQ0� in
F2

�s� with a nonzero �N would induce a coupling between
even and odd LLs. To try to exclude such an even-odd cou-
pling and to make LLs better basis functions for diagonaliza-
tion, the factor exp�−i��v ·�� in Eq. �23� will be written as
exp�i��vxQ�exp	−i��v ·�s�Q�
, where �s�Q�=�+Qx̂
=−i�+rH

−2�z+QrH
2 �x̂. Correspondingly, the pair field is ex-

pressed as

�s = �
n

Ys,n�n�z + QrH
2 ,x�0� . �30�

Then, using Eq. �29�, the matrix element appearing in F2
�s� is

written as

� d2r	�n1
�z + QrH

2 ,x�0�
�exp�i�v · �s�Q���n2
�z + QrH

2 ,x�0�

= exp�− �2���2/2�Ln1,n2
���� , �31�

where

Ln1,n2
�w�

= �
n0=0

min�n1,n2� �n1 ! n2!

�n1 − n0� ! �n2 − n0� ! n0!
wn1−n0�− w��n2−n0.

�32�

In this way, F2
�s� is expressed by

F2
�s�

N
= �

n1,n2

Ys,n1

� � 1

Nwss
�n1,n2

− �
�c

�

d�
f���

2

� �
�=�1

�exp�− i��vxQ −
�2���2

2
�

� ��̂k�2	cos��vxQ0� + i�N sin���vxQ0�


�Ln1,n2
�������Ys,n2

. �33�

As usual, the zero-field �mean field� transition temperature Tc
can be introduced by deleting 1 / �Nwss� through the relation

1

Nwss
= ln

T

Tc
+ �

�c

d�
2�T

sinh�2�T��
. �34�

To determine Hc2�T� and the pair-field solution giving a free-
energy minimum at each �H ,T� below Hc2�T�, we only have
to diagonalize the above expression of F2

�s� and to determine
Ys,n giving the lowest eigenvalue under a fixed Q.

In the conventional GL region in low fields where both Q0
and � are small in magnitude, the imaginary term disappears
if identifying Q with �NQ0, and F2

�s� is diagonalized via the
LL basis functions �n�z+QrH

2 ,x �0� in the different gauge
A=H�z+QrH

2 �x̂. According to Eq. �27�, this function is noth-
ing but exp�−iQx��n�z ,x �QrH

2 ẑ�. Due to the phase factor
e−iQx, this state was often called a helical vortex state.12

However, �0�z+QrH
2 ,x �0� itself is an Abrikosov triangular

lattice in the lowest LL, and the nonzero Q is not practically
observable in gauge-invariant quantities such as ��s�r��2. As
shown in our previous report,20 the vortex lattices show a
single or consecutive first order structural transitions
�FOSTs� with increasing field, depending upon the �N value,
even when assuming Q=�NQ0, because the paramagnetic
depairing enhanced by increasing the field makes the higher
LLs with n�1 active. However, it is unclear whether or not
the phase diagrams obtained under the assumption Q
��NQ0 are justified in higher fields. Taking account of this
point, we have also examined the phase diagram by directly
optimizing the Q value at each �H ,T�. As is seen later in the
full-gap case, however, a direct optimization of the Q value
does not significantly change the resulting phase diagram.
For this reason, in obtaining phase diagrams for other pairing
states, we shall focus later on those following from the rela-
tion Q=�NQ0.

So far, we have implicitly assumed that no modulation
parallel to H � ŷ occurs in Rashba superconductors, because
the anisotropic Zeeman term in Eq. �15� is not accompanied
by ky and hence, does not lead to a paramagnetic depairing
effect on the spatial variations parallel to H of �s in contrast
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to the case of the FFLO state in the lowest LL.4 In fact, we
have verified this fact concretely in each case of pure singlet
pairing. Therefore, throughout this paper, the pair field can
be assumed to be independent of y.

Next, we explain how to evaluate the quartic term of the
GL free-energy functional. Using the set of Ys,n determined
from F2

�s�, an equilibrium vortex lattice structure is obtained
by minimizing the quartic term. The quartic term F4

�s� is, as
well as the last term in Eq. �20�, the sum of contributions
from each FS and, in general, takes the form

F4
�s� =� d3r�

a

�K4
�a����i���s

��r1��s�r2��s
��r3��s�r4��ri→r,

�35�

where

K4
�a����i�� = T�



� d3k

�2��3Ga�k, i
�Ga	− k + ��1
�a���,− i



� Ga�− k + �2
�a�,− i
�Ga	k + ��3

�a��� − �2
�a�, i

 ,

�36�

where � j
�a�=−i� j +2eA�r j�+ �−1�aQ0x̂. However, when nu-

merous LLs are used in describing �s, it is numerically for-
midable to exactly examine this expression. For Rashba su-
perconductors, however, replacing the original quartic term
with the conventional GL representation

F4
�s� � F̃4

�s� = cs� d3r��s�r��4, �37�

with a positive coefficient cs seems to be justified. First, by
directly examining F4

�s� for the cases with only the lowest LL
and the lowest two LLs, we have found that, in contrast to
the centrosymmetric case,4 the overall sign of F4

�s� remains
positive even in T→0 limit. Based on these observations, it
is believed that cs�0 so that the first order Hc2 transition
does not occur in noncentrosymmetric superconductors.14

Further, for the purpose of determining a stable structure at
each �H ,T�, even the H and T dependence of cs is unneces-
sary. On the other hand, even the nonlocal corrections arising
from the orbital depairing have been neglected in F4

�s�. Ex-
plaining this point will be postponed until our numerical re-
sults are presented in this section.

To represent ��s�2 in terms of LLs, it is convenient to use
the formula21

�n1

� �z,x�0��n2
�z,x�r0� = �

G
Ln2,n1� �qx − iqz�rH

�2
�F�G,r0�eiq·r̃,

�38�

where r̃= ẑ�z+ x̂x /�,

F�G,r0� = �− 1�m1m2exp�−
1

4
q2rH

2 +
i

2
G · r̃0� �39�

is the Fourier transform of �0
��z ,x �0��0�z ,x �r0�, q=G+k0,

k0= ŷ� r̃0 /rH
2 , and r̃0= ẑ�z0+ x̂x0 /�. The reciprocal lattice

vector G is given by

G = m1G1 + m2G2,

G1 = k��x̂ − ẑ−1 cot �� ,

G2 = ẑ
2�

k�rH
2

, �40�

under the condition

N�G2� = M�G1 · ẑ� , �41�

where m1, m2, N, and M are integers. The condition �41�
ensures a periodicity of an obtained vortex lattice in the
x-direction. Then, using Eq. �38�, we have

��s�r��2 = �
n1,n2

Ys,n1

� Ys,n2
	�n1

�z,x�0�
��n2
�z,x�0�

= �
m1,m2

�− 1�m1m2exp�− ���2/2�

��
n1,n2

Ys,n1

� Ys,n2
Ln1,n2

���eiG·r̃, �42�

where �=−rH�Gx−iGz� /�2. Thus, Eq. �37� becomes

F̃4
�s�

V
= cs �

m1,m2

e−���2� �
n1,n2

Ys,n1

� Ys,n2
Ln1,n2

����2
�43�

and the GL free energy in equilibrium is given by

F�R� = −
�F2

�s��2

2F̃4
�s�

. �44�

The equilibrium vortex lattice structure is determined by

minimizing F̃4
�s� or F�R� with respect to k and �. Throughout

this paper, we present results of the h-t phase diagram ob-
tained in terms of the lowest eight LLs.

Now, the vortex lattice structures for each pairing state
following from the above formulation will be explained.

A. Full gap

First, we explain results in the s-wave pairing case with

no gap nodes where �̂k=1. The �N dependence of the phase
diagram in the s-wave case has been previously studied
based on the assumption Q=�NQ0.20 Here, it will be shown
that the previous results are not essentially changed by cor-
rectly optimizing the Q value for each field and temperature.

First, let us start from explaining the important role, men-
tioned in Sec.I, of the anisotropy of the Zeeman energy in the
noncentrosymmetric superconductors. As an example, a
phase diagram in the full gap case and in �N→0 limit has
been shown in Fig. 2�b�. The two figures in Fig. 2 have been

obtained by assuming J̃=0.2 and �Horb
�2D��0� / �2�Tc�=0.4,

where Horb
�2D� is the orbital limiting field at T=0 in 2D limit.

Hereafter, the �N→0 limit, in which Q=0, corresponding to
the limit of an infinite band width will be often considered to
understand an origin of a strange vortex lattice structure, and
the applied field value will be denoted as h=H /Horb

�2D��0�. In
Fig. 2�b�, intermediate lattice structures changing with vary-
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ing the field appear. They are induced by higher even LLs
contributions to �s with n=2m �m�0�, which play enhanced

roles in noncentrosymmetric systems through the vx� k̂x de-
pendence in the Zeeman energy term of Eq. �16�. Such in-
termediate phases do not appear in Fig. 2�a� corresponding to
the familiar centrosymmetic case which is obtained by re-
placing cos��vxQ0� in Eq. �33� with cos��vFQ0� independent

of k̂ and setting �N=Q=0. Thus, the intermediate states in
Fig. 2�b� can occur even in Rashba superconductors with
smaller Maki parameters where the high-field state �A� of
Larkin-Ovchinnikov �LO� type does not appear. Further, the
states �B� and �C� in Fig. 2�b� and the continuous crossover
between them are also seen in the singlet-triplet �s-t� mixed
case to be discussed later.

In Fig. 3, our results in the s-wave case obtained by di-
rectly optimizing the Q-value are shown together with the
resulting Q�h� data obtained along the Hc2�T� curve in �N
=0.2 case. All figures in this section including Fig. 3 have

been obtained by using J̃=0.1. The Hc2�T� value is slightly

enhanced with increasing ��N� and thus, �Q�� ���, suggesting
that an increase in spin-orbit coupling diminishes the para-
magnetic depairing. The resulting phase diagram in �N=0
case, Fig. 3�a�, is quite similar to Fig. 2�b� �see, however, the
next paragraph�. By assuming a very small but nonvanishing
�N, not only the LO type state, �A� in Fig. 3�a�, but also the
intermediate states �B� and �C� there are destabilized by the
appearance of the modulated state, �B� and �C� in Fig. 3�b�,
which have reflection symmetry in contrast to �B� and �C� in
Fig. 3�a� and are stabilized by the hidden Q=Qx̂-vector or
the resulting anisotropy �see Sec.I�. Throughout this paper,
we often encounter a compressed square lattice in Rashba
superconductors, which is created through a field-induced
crossover from the stripe-like modulated state, �B� in Fig.
3�b�. As �N is increased further, the states �A�, �B�, and �C�
in Fig. 3�a� with no reflection symmetry in the plane perpen-
dicular to H are completely lost, and the high-field state for
�N=0.2 is the square lattice corresponding to �C� of Fig. 3�b�
which continuously occurs through a crossover from �B� in
Fig. 3�b�. Further, even the triangular vortex lattice at higher
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FIG. 3. �Color online� Resulting h-t phase diagrams for �a� �N=0, �b� �N=−0.001, and �c� �N=−0.2 and �d� −Q /Q0 vs h curve taken
on Hc2�T� of the figure �c� in the full gap �s-wave pairing� case, where h=H /Horb

�2D��0� and t=T /Tc. With increasing ��N�, the Hc2 value
merely shows a slight increase, while the corresponding change in the vortex lattice structure is drastic. The intermediate structures with no
reflection symmetry, seen in Fig. 2�b�, compete with the striped structure, �B� of �b�, modulating along x̂ perpendicular to both of H and the

c axis and are overcome by the latter at higher �N-values. The parameter values �Horb
�2D��0� / �2�Tc�=0.4, J̃=0.1, and �c= �20�Tc�−1 are

commonly used.
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temperatures is compressed with increasing ��N�, possibly
reflecting mixings between even and odd LLs induced by a
nonzero �N, and the only structural transition surviving at
higher ��N� is the FOST between the compressed square and
triangular lattices. Note that there are two types of continu-
ous crossovers in structure in intermediated fields. As well as
the crossover expressed as �B� and �C� in Fig. 2�b�, this
crossover between �B� and �C� in Fig. 3�b� also appears in
the more general case with s-t mixing of pairing channels.

Here, the difference in the orientation of the low-field
triangular lattice between Fig. 3�a� and other figures in Figs.
2 and 3 will be commented on. First, in Fig. 3, we find that
even a small but nonvanishing ��N� changes the orientation
of the triangular lattice, and that, at a fixed �and nonvanish-
ing� �N, there is no indication of an orientational transition
in the triangular lattice region. Below the dashed line in Fig.
3�a�, however, the orientation is found to be the same as in
Fig. 3�c�. This feature is commonly seen in the cases of other
pairing states to be given below. On the other hand, the dif-
ference in the orientation between Figs. 2�b� and 3�a� can be

attributed to the difference in the J̃ value used in calcula-
tions, or equivalently, to the strength of the paramagnetic
depairing: As the paramagnetic depairing is enhanced, higher
LL modes with even indices in the pair field become more
effective and change the orientation. This statement was jus-
tified by separately performing a calculation taking account
only of the lowest LL. Besides, the absence of such an ori-
entational change in the case with a nonvanishing �N is also
consistent with the effective reduction of the paramagnetic
depairing due to a nonzero �N mentioned in the preceding
paragraph. Therefore, as far as the uniaxial anisotropy mea-
sured by  is not so large, the orientation of the low-field
triangular lattice in real systems with nonvanishing ��N� is
expected to keep that of Fig. 3�c�. Hereafter, we will not
discuss this possibility of an orientational transition any
longer.

Quantitatively, there are some differences between the
present Fig. 3 following from the Q optimization and Fig. 2
in Ref. 20 where Q=�NQ0 was assumed. For instance, in the

latter for �N=0.003, the LO-like state, �A� in the present
Figs. 3�a� and 3�b�, survives over a broader field range com-
pared with that in the corresponding one in the former. How-
ever, except such quantitatively subtle differences, there
were no notable differences due to the Q value in the phase
diagrams and their �N dependences. This evidently shows
that the analysis in Ref. 20 trying to take care of the approxi-
mation on the Q value by including the eight LLs is justified.
Further, judging from this fact that the vortex structure is not
sensitive to the Q-value, our neglect of the kz dependence
accompanying Q0 in Eq. �20� is also believed to be safely
valid.

Here, based on the figures in Fig. 3, our replacement of
the original quartic term F4

�s� with the conventional local ex-

pression F̃4
�s� will be discussed. This replacement is safely

valid in centrosymmetric superconductors with a large para-
magnetic effect.22,23 Even in the present Rashba case, the
same thing should hold. For smaller ��N�, the paramagnetic
effect is stronger, and intriguing modulated vortex structures
tend to appear. Although there might be possibility that the
validity of this local approximation is subtle in intermediate
fields, the structural changes in the case with nonzero �N are
smooth so that most of FOSTs in �N=0 case are changed
into crossovers. In such a crossover regime, a large deviation

between the results of F4
�s� and of F̃4

�s� is not expected. For
this reason, we believe that the use of the local approxima-
tion for F4

�s� is qualitatively valid and does not lead to a
significant error in our results on the vortex lattice structure.

B. Horizontal line nodes

Here, phase diagrams in the case of a superconducting
gap with horizontal line nodes will be briefly explained. Re-
cently, such a nodal gap has been proposed as a model of
CeRhSi3 and CeIrSi3,15 and, following Ref. 15, we choose

the gap function �̂k=�2cos�2k̃z�. Figure 4 includes the re-
sulting phase diagrams in this case. Clearly, the obtained
phase diagrams are essentially the same as those in the full
gap case. This is due to the fact that, in the angular average

��� ���

FIG. 4. �Color online� The resulting h-t phase diagrams for �a� �N=0 and �b� �N=−0.1 in the case with �̂k=�2cos�2k̃z�. Other parameter
values are the same as in Fig. 3.
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over each FS, the k̃z dependence of the gap function does not

directly couple to the k̂x dependence in the Zeeman energy.
Thus, the same thing should hold for any gap function de-

pendent only on k̃z. Therefore, it appears that, when the s-t
mixing is negligible, the presence of a horizontal line node in
the superconducting gap cannot be judged from the resulting
vortex lattice structure.

C. Vertical line nodes

In contrast to the preceding case, the momentum depen-
dence in the gap function directly couples to that of the Zee-
man term when the gap nodes consist of vertical lines, lead-
ing to a drastic change in vortex lattice structure. This will be

explained here in the dx2−y2-pairing case where �̂k
=�2cos�2�k�.

In this dx2−y2-pairing case, situation changes depending on
whether the applied field H is along the nodal direction or
antinodal one. Differences between these two cases already
appear in the Hc2-curves shown in Fig. 5. In H parallel to an
antinode, the Hc2�T� value is slightly enhanced compared
with that in the full gap case obtained in terms of the same
set of parameter values. In contrast, Hc2�T� in H parallel to a
gap node is remarkably depressed compared with the full-
gap curve. This strong anisotropy in Hc2 is a consequence of

the coupling in the momentum dependence between �̂k and
the anisotropic Zeeman term.

A more remarkable difference is seen in the resulting vor-
tex lattice structures in the two-field configurations. In H
parallel to an antinode, the vortex lattice structure is qualita-
tively the same as in the preceding two cases, while, in H
parallel to a gap node, there are no intermediate states in
�N=0 limit, and the high-field state is of the LO type with an
unidirectional modulation parallel to ẑ, i.e., the c-axis. In this
case, the direction of the modulation in the LO-like state is
pinned by the vertical line nodes. The resulting vortex lat-
tices always have reflection symmetry in the plane perpen-
dicular to H in contrast to the intermediate phases in Figs.

3�a� and 4�a�. This fact may have crucial consequences in the
cases with a significant mixing of a d-wave component with
vertical line nodes and the corresponding f-wave one �see
Sec.V�.

To understand whether this vertical LO state survives for
realistic �N values, we have also examined the correspond-
ing phase diagrams for nonzero �N values and have found
that, for ��N��0.1, the vertical LO state is absent even close
to Hc2�0�. As Fig. 6 shows, however, the striped state with
modulation perpendicular to the c-axis, corresponding to �B�
in Fig. 3�b�, occupies a much narrower region compared with
that in Fig. 3�b� in the full gap case, because the LO-like
state competing with this intermediate state is supported in
this case by the vertical line nodes. Thus, we expect that the
region in which the modulated state replaces the vertical LO-
like state is narrower even for more realistic �N values, and
thus that the LO-like state may be observable as a high-field
state in this case in contrast to that in the preceding two
cases. For these reasons, we believe that the presence of

��� ���

FIG. 5. �Color online� The resulting h-t phase diagrams in the dx2−y2-pairing case in magnetic fields applied along �a� a node and �b� an
antinode of the energy gap. For both figures, �N=0 was assumed, and other parameter values are the same as those in Fig. 3. Note the
modulation parallel to the c-axis and the absence of intermediate phases in �a�.

FIG. 6. �Color online� The resulting h-t phase diagram in the
dx2−y2-pairing system with �N=−0.003 in magnetic fields applied
along a node. The same parameters are used as in Fig. 5
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vertical line-gap nodes can be anticipated by investigating
vortex lattice structures.

IV. SINGLET-TRIPLET MIXED CASE

A. Quasi 2D case

In the preceding section, the singlet �s�-triplet �t� mixing,
which is usually present in noncentrosymetric superconduct-
ors with nonzero �N, has been neglected by assuming one of
the two channels to be dominantly attractive. This approxi-
mation is valid for a vanishingly small ��w�, i.e., as far as one
of wss and wtt is small enough 	see Eq. �4�
. However, when
the ratio wtt /wss is of order unity, this s-t mixing drastically
changes the H-T phase diagram even if ��N� is vanishingly
small. That is, the s-t mixing is measured by a finite wtt /wss,
i.e., Eq. �4�, in nonzero fields rather than a nonzero �N �Ref.
11� in zero field case, as a result of the fact that the pair field
in nonzero fields is intrinsically spatially varying.

In this section, roles of the s-t-mixing will be first exam-
ined in details for Q2D systems with a large . For simplic-
ity, we focus on the case of a mixing of s-wave and p-wave
pairings. In this Q2D case, the momentum dependence of
�gk� appearing in some places may be neglected to simplify
our evaluation of the free energy. To clarify the details of this
treatment, let us first start from introducing the pair-field on
each of the split FSs in the s-t mixed case. As the expressions
of pair-field operators �p

�j� �j=s and t� suggest, the �spatially
varying� energy gap on the FS a is generally given by

�a =
�s − �− 1�a�gk��t

�2
�a = 1,2� , �45�

which is accompanied by the momentum dependence gk of
the spin-orbit coupling even after having been separated

from �̂k-dependence, where �s ��t� is the singlet �triplet�
gap corresponding to ��s� ���t��. In Q2D case, the factor �gk�
in �a is replaced by unity, and

�a � �a
�0� �

�s − �− 1�a�t

�2
�46�

will be used in this section.
Derivation of the quadratic GL term F2

�Q2D� is almost the
same as in the preceding section once � j �j=s and t� are
expressed via �a

�0� through Eq. �46�, and we obtain

F2
�Q2D� =� d3r��

a
�� �w−1�ss + �w−1�tt

2
− �− 1�a�w−1�st�

���a
�0��2 − 2��a

�0���K2
�a�����a

�0��
+ � �w−1�ss − �w−1�tt

2
�	�1

��2 + �c.c.�
� . �47�

According to the expression �22� of K2
�a�, it is natural in this

case to choose the gauge in the manner depending on each
FS and to represent the pair field in the form

�a
�0� = �

n�0
Ya,n�n�ra�0� , �48�

with ra=r+ �−1�aQ0rH
2 ẑ. Note that the gauge-invariant gradi-

ent corresponding to �n�ra �0� is

�a = − i � + rH
−2	z + �− 1�aQ0rH

2 
x̂ . �49�

Using formula �29�, the term including the � integral in Eq.
�47� becomes

� d3r��a
�0���K2

�a�����a
�0� = NaV �

n1,n2

Ya,n1

� Ya,n2�
�c

�

d�f���

�e−1/2���2�2
Re Ln1,n2

����� .

�50�

To calculate the off-diagonal �last� term in Eq. �47�, we
will directly use formula �38�, and consequently,

� d3r��1
�0����2

�0�

= �
n1,n2

Y1,n1

� Y2,n2� dzdx�n1

� �r1�0��n2
�r1�2Q0rH

2 ẑ�e−i2Q0x

= V �
n1,n2

Y1,n1

� Y2,n2
e−Q0

2rH
2
Ln2,n1

��2Q0rH� , �51�

where the property �27� was used.
Therefore, Eq. �47� takes the form

F2
�Q2D�

V
= �

a,n1,n2

Ya,n1

� Ya,n2

����w−1�ss + �w−1�tt

2
− �− 1�a�w−1�st��n1,n2

− 2Na�
�c

�

d�f���e−1/2���2�2
Re Ln1,n2

������
− N��w�−1 �

n1,n2

	Y1,n1

� Y2,n2
e−Q2rH

2
Ln2,n1

��2QrH�

+ �c.c.�
 . �52�

Here, it is important to note that the paramagnetic effect
appears through the FFLO wave number Q0 only in the last
term, i.e., the cross term between different FSs. Thus, in
��w�→� limit, i.e., when wss�wtt 	see Eq. �4�
, the para-
magnetic effect is lost irrespective of the wst value, and the
orbitally limited situation is realized. The parameter ��w�
measures the magnitude of the s-t mixing in nonzero fields.
In the present Q2D model, the energy gap on the FS with a
smaller density of states vanishes �see, for instance, Fig. 8
shown below� in ��w�→� limit. The single-pairing case, that
is, the pure singlet or pure triplet case corresponds to the case
with vanishing �w, while the single and triplet channels
equally contribute and are competitive with each other when
��w�→�.

The zero-field transition temperature Tc is given by wij
through the expression
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�w−1�ss + �w−1�tt

2N

= �
�c

�

�d�f����T=Tc

+���w�−2 + ��N�
�c

�

�d�f����T=Tc
+

�w−1�st

N �2

.

�53�

It is not difficult to verify that the above expression is
equivalent to Eqs. �28� and �31� in the impurity-free case in
Ref. 24.

Regarding the quartic term, the method in the single pair-
ing case will be directly used. The quartic term F4

�Q2D� is
given by Eq. �35� with �s replaced by �a

�0�, and, for a similar
reason to that in the single pairing case, it will be replaced by
its local expression

F4
�Q2D� � c2� d3r�

a

Na��a
�0��r��4, �54�

where c2 is positive. Then, the quartic term to be used for
determining the lattice structure is given by

F4
�Q2D�

V
= c2�

a

Na �
m1,m2

e−���2� �
n1,n2

Ya,n1

� Ya,n2
Ln1,n2

����2
,

�55�

and the GL-free energy in equilibrium is given by

F�R� = −
�F2

�R��2

2F4
�R� . �56�

We show, in Figs. 7 and 8, examples of the resulting
phase diagrams and vortex lattice structures in the case with
a mixing of s-wave and p-wave components and with a Q2D
�cylindrical� FS. In those figures, the vortex lattice structures
at several selected points in each h-t phase diagram are rep-
resented as real space patterns of ��1

�0�� on FS1, ��2
�0�� on FS2,

��s�, and ��t�. In general, when ��N� is essentially zero so that
both of the two FSs contribute equally to superconductivity,
as shown in Fig. 7, the vortex positions in �1

�0� do not coin-
cide with those in �2

�0�, reflecting the fact that the spatial
pattern of ��s� tends to become quite opposite to that of ��t�.
In this case, when �s consists of even LLs, �t is expressed
only by the odd LLs, and vice versa. On the other hand, with
increasing ��N�, one of the two FSs dominantly contributes to
superconductivity, and, according to Eq. �46�, the �nearly�
zero points of ��s� coincide with those of ��t� �see Fig. 8�.
When one of the two FSs primarily determines superconduc-
tivity, the paramagnetic depairing is significantly reduced,
because the paramagnetic effect on a single FS is trivially
gauged away14 	see also Fig. 1�b�
. As in the case with a
single pairing component, an increase in ��N� results in a
significant mixing between the even and odd LLs, and, as in
Fig. 8, ��s� tends to show similar spatial patterns to ��t�.

Figure 7 corresponds to a phase diagram of the case with
a slight inclusion of a p-wave pairing component in the pure
s-wave case. Here, �N is set to be zero, and hence, this figure

is comparable with Figs. 3�a� and 3�b�. Similarly to the dif-
ference between Figs. 3�a� and 3�b� induced by a slight in-
crease in ��N�, the intermediate state �C� in Fig. 7 with no
reflection symmetry are limited to a narrow region and domi-
nated by the stripe-like modulated lattice �A� and �B�. How-
ever, the structure at �B� in Fig. 7 is not a square lattice
appearing as a crossover from the striped structure �A� but
rather a triangular lattice which can be obtained by rotating
another triangular lattice appearing in lower fields just below
FOST4. The triangular lattice in intermediate fields is also
present even for larger ��w�, i.e., even when the s- and
p-wave components are more significantly mixed, while it is
lost as ��N� is larger, as can be seen in Fig. 8 where a more
s-t mixing and a larger ��N� than in Fig. 7 were assumed. A
typical �N dependence of Hc2�T� curve including that of Fig.
8 has been given in Ref. 14. In the �N=0 limit, the h value
corresponding to Hc2�0� is close to 3.0. Such a much larger
Hc2�0� than that of Fig. 3�a� is due to the s-t mixing, which
clearly plays more dominant roles than a nonzero �N for
enhancing Hc2. Nevertheless, Fig. 8 has similar features to
those of Fig. 3�c�. For instance, in both Figs. 3�c� and 8, the
triangular lattice near Tc shows an anisotropic structure com-
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FIG. 7. �Color online� The resulting h-t phase diagram in the
s-wave and p-wave mixed case based on the Q2D approximation

�46�. The used parameters are J̃=0.2, �N=0 and �w=1.25. For each
point in the phase diagram, the four images in real space of ��1�,
��2�, ��s�, and ��t� are shown from top to bottom.
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pressed along the c-axis, while the vortex structure in higher
fields is an anisotropic square lattice created from the striped
lattice �B� in Fig. 3�b�. Therefore, in the present case with a
cylindrical FS with a negligibly small corrugation, an in-
crease in a s-t mixing plays qualitatively similar roles to an
increase in the magnitude of the spin-orbit coupling ��N� in
the h-t phase diagram, and, in a realistic situation where both
�w and ��N� are nonvanishing, vortex lattice structures with
no reflection symmetry such as �B� in Fig. 3�a� are expected
not to occur.

In �C� of Fig. 8, the image of ��s� is much brighter than
that of ��t�, while both of them in �A� are almost the same as
each other. The former feature in lower fields is a reflection
of the fact that, in zero field, the singlet component is the
dominant pairing state, and a small ��N� induces the triplet
component, while, with increasing field, the role of inducing
a s-t mixing is played not by ��N� but rather by the nonvan-
ishing �w. In particular, at high enough fields and in low-
temperature limit, the vortex structure is an anisotropic
square lattice oriented along the c axis for any �N, implying
that the phase diagram there is sensitive not to �N but to
��w�. In the next subsection, however, these conclusions in
Q2D case are found to be changed for more three

dimension�3D�-like FSs. For instance, the h-t phase diagram
for a more 3D-like FS seems to have a much stronger �N
dependence than that seen above.

In obtaining Fig. 8, we have assumed �N�0 and wst�0.
Since wst generally depends on the higher-energy cutoff, the
results following from diagonalization of F2

�Q2D� are quanti-
tatively affected by the details of wst. In fact, if wst is zero or
negative, ��1� rather than ��2� should be larger. The opposite
result to this, seen in Fig. 8, is a consequence of a positive
wst. However, we have reexamined Fig. 8 by changing the
sign of wst and have found that the field induced changes of
the vortex lattice structure remain qualitatively the same as
those in Fig. 8. Based on this fact, we shall assume hereafter
the vortex lattice structure to be qualitatively insensitive to
the sign of wst.

B. More 3D-like case

In this subsection, the Q2D approximation in the last sec-
tion is relaxed, and effects of the corrugation parallel to the c
axis of the Q2D Fermi surface will be incorporated. Then,
the kz dependence in �a neglected in the last section needs to
be included. In contrast to the weak kz dependence accom-
panying the parameter Q0, neglected for simplicity in Eq.
�20�, this kz dependence may lead to a change in the degree
of mixing of even and odd LLs which affects the vortex
lattice structure. To simplify our treatment, the factor �gk� in
�a will be approximated by

�gk� = �1 − J̃�1 − cos kz� , �57�

��1 − J̃ +
J̃ cos kz

2�1 − J̃
. �58�

Then, using

�̃a
�0� =

�s − �− 1�a�1 − J̃�t

�2
, �59�

�a is expressed as

�a = �̃a
�0� − �− 1�a J̃ cos kz

2�2�1 − J̃�
�t = �1 + ���̃a

�0� − ��̃b
�0�,

�60�

where a and b=1 or 2, a�b, and

� =
J̃ cos kz

4�1 − J̃�
. �61�

First, let us start from rewriting terms dependent on wij in
the GL quadratic terms 	see Eq. �47�
 into the form

2 �
i,j=s,t

�w−1�ij�i
�� j� = 	�w−1�ss + �w̃−1�tt + 2�w̃−1�st
��̃1

�0��2

+ 	�w−1�ss + �w̃−1�tt − 2�w̃−1�st
��̃2
�0��2

+ 2	�w−1�ss − �w̃−1�tt
Re��̃1
�0���̃2

�0�� ,

�62�
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FIG. 8. �Color online� The resulting h-t phase diagram in the
s-wave and p-wave mixed case based on the Q2D approximation

�46�. The used parameters are J̃=0.2, �N=−0.1 and �w=5.
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expressed by �̃a
�0�, where �w̃−1�tt= �w−1�tt / �1− J̃�, and �w̃−1�st= �w−1�st /�1− J̃. The remaining term including the kernel K2

�a� is
given by

− 2�
a

�a
�K2

�a�����a� = − 2�
�c

�

d�f����
s
,a

Na�a
�e−s
i�v·�a�a� = − 2�

�c

�

d�f����
s
,a

Na�1 + ��2��̃a
�0���e−s
i�v·�a�̃a

�0�

+ �2es
i�2Q0vx��̃b
�0���e−s
i�v·�b�̃b

�0� − ��1 + �����̃a
�0���e−s
i�v·�a�̃b

�0� + ��̃b
�0���e−s
i�v·�a�̃a

�0��� . �63�

Note that this term is diagonal with respect to �a, while it is not diagonalized any longer in the �̃a
�0�-representation. Then, by

representing �̃a
�0�, as in Eq. �48�, in the form

�̃a
�0� = �

n�0
Ya,n�n�ra�0� , �64�

the cross term between �̃b
�0� and �̃a

�0� in Eq. �63� becomes

� d3r��̃b
�0���e−s
i�v·�a�̃a

�0� = �
n1,n2

Yb,n1

� Ya,n2
Jn1,n2

	�− 1�b�2Q0rH,s
��
 , �65�

where

Jn1,n2
	�− 1�b�2Q0rH,s���
 =� d3r�n1

� �rb�0�e−s
i�v·�a�n2
�ra�0�

=
1

�n2!
e−1/2���2�2�− s
�

�� + s

�

������n2

e1/2�2�2� d2r�n1

� �rb�0��0�ra − s
�2rH��ẑ�0�

=
1

�n1 ! n2!
eQ0

2rH
2 −1/2���2�2�− s
�

�� + s

�

������
n2

��− 1�b�2Q0rH + s
���n1e−2Q0
2rH

2 −�− 1�bs
�2Q0rH��

= e−1/2���2�2
e−1/2�2Q0rH��2Q0rH+�− 1�bs
2���Ln1,n2

	�− 1�b�2Q0rH + s
��
 . �66�

The last equality in Eq. �66� can be proved inductively. In this way, the quadratic GL free energy in the present case is
expressed in the form

F2

2V
= �

a,n1,n2

Ya,n1

� Ya,n2���w−1�ss + �w̃−1�tt

2
− �− 1�a�w̃−1�st��n1,n2

− 2�
�c

�

d�f���e−1/2���2�2
�Na�1 + ��2Re Ln1,n2

���� + Nb�
2 Re	e�− 1�a+1i2Q0vx�Ln1,n2

����
���
+ �

n1,n2

�Y1,n1

� Y2,n2
− ��N1 + N2���̃w�−1e−Q0

2rH
2
Ln2,n1

��2Q0rH� + �
�c

�

d�f�����1 + ���N1	Jn2,n1

� ��2Q0rH,���

+ Jn2,n1

� ��2Q0rH,− ���
 + N2	Jn1,n2
�− �2Q0rH,��� + Jn1,n2

�− �2Q0rH,− ���
��� + �c.c.�� , �67�

where

�̃w = −
2�N1 + N2�

�w−1�ss − �w̃−1�tt

�68�

is the measure of the s-t mixing redefined within the treatment in this section. Here, since w̃tt is not the bare attractive

interaction potential, the full mixing of the two pairing channels does not coincide with the limit in which �̃w diverges. The
above F2 expression implies that the zero field transition temperature Tc is determined from

�w−1�ss + �w̃−1�tt

2�N1 + N2�
= �1 + 2��

�c

�

�d�f����T=Tc
+ �� 2�

�c

�

�d�f����T=Tc
− ��̃w�−1�2

+ � �w̃−1�st

N1 + N2
+ �N�

�c

�

�d�f����T=Tc�2�1/2

,

�69�

where
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 =
J̃

4�1 − J̃�
. �70�

In contrast to F2
�Q2D�, the paramagnetic effect in the present free energy does not disappear even when �̃w diverges. Since

the parameter Q0 appears even in the diagonal terms with respect to �̃a
�0�, it is not easy to, in advance, prescribe the situation

in which the orbital limiting is realized.
Again, the local approximation will be used for the quartic term of the corresponding GL free-energy functional to

determine stable vortex structures. The quartic GL term to be examined is

F̃4
�R� � � d3r�

a

Na��a�4� , �71�

where

��a�4 = �1 + ��4��a
�0��4 + �4��b

�0��4 − 4��1 + ��3��a
�0��2Re��a

�0���b
�0�� − 4�3�1 + ����b

�0��2Re��b
�0���a

�0�� + 2�2�1 + ��2	��a
�0��2��b

�0��2

+ Re���b
�0���a

�0��2� + ��a
�0���b

�0��2
 . �72�

To examine Eq. �72� in more details, we first rewrite �a
�0���a�

�0��a ,a�=1,2� in the form

�̃aa�
�0� �G� =� d2r�a

�0���a�
�0�e−iG·r̃

= �
n1,n2

Ya,n1

� Ya�,n2� d2r�n1

� �ra�0��n2
�ra��0�e−iG·r̃

= �− 1�m1m2exp�−
1

2
��aa��

2 + �− 1�aiQ0rH
2 Gz�a,a�� �

n1,n2

Ya,n1

� Ya�,n2
Ln1,n2

��aa�� , �73�

where Eq. �38� was used, and

�aa� = −
rH

�2
�	Gx − ��a,a� − 1�a2Q0

1/2rH
 + iGz� . �74�

Using Eqs. �72� and �73�, Eq. �71� becomes

2F˜4
�R�

N1 + N2
= �

m1,m2

��1 − �N��1 + 3 2� +
3

4
 4���˜11

�0��2 + ��1 + �N��1 + 3 2� +
3

4
 4���˜22

�0��2 − 3 2�	2�1 − �N� + 4
Re	�˜11
�0��˜12

�0�


+ 	2�1 + �N� + 4
Re	�˜22
�0��˜21

�0�
� + 2�2 +
3

2
 2���˜11

�0��˜22
�0� + Re	�˜12

�0���˜21
�0�
 + ��˜12

�0��2� . �75�

Substituting Ya,n determined from F2 into Eq. �73�, the stable

lattice structure can be determined from F̃4
�R�. Further, just

like in Figs. 7 and 8 in Q2D case, we will present not only
the resulting phase diagram but also the spatial variations in
��a�, ��s�, and ��t� at some selected points in an h-t phase
diagram. According to the expressions given so far, they are
given by

��a�2 = �1 +
 2

2
���a

�0��2 +
 2

2
��b

�0��2 − 2 Re	�1
�0���2

�0�


�76�

��s�2 =
1

2
	��1

�0��2 + ��2
�0��2 + 2 Re��1

�0���2
�0��
 �77�

��t�2 =
1

2�1 − J̃�
���1

�0��2 + ��2
�0��2 − 2 Re��1

�0���2
�0��� . �78�

A typical example of �N-dependences of the h-t phase
diagram at the same �̃R value is shown in Fig. 9. The value
�̃w=5 is estimated by assuming !c /Tc=10 to roughly corre-
spond to �w=−2, where !c is the higher-energy cutoff for
the pairing. For this reason, the Hc2 value suggested in Fig.
9�a� is comparable with those in Fig. 2 and is much smaller
than the corresponding one in Q2D case with �w=5. In spite
of this, the �N dependence in Fig. 9 with a more 3D-like FS
is dramatic compared with that in Q2D case: Even a small
��N� leads to an Hc2�T� curve close to the orbital limit, al-
though we have checked that the Hc2�T� curve in Fig. 9�b�
lies slightly below that in the orbital-limited case.
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More important differences from those in Q2D case are
seen in the resulting vortex lattice structures. According to
the results in Q2D case, a slight inclusion of a finite �w has
similar roles to those of a finite �N, and the scenario sug-
gested by Fig. 3 was that the states of LO type with no
reflection symmetry are destabilized. However, the corruga-
tion of the cylindrical FS, or a 3D-like FS seems to destabi-
lize rather the striped modulation induced by the finite �N
and appeared as �B� and �C� in Fig. 3�b�. In fact, it seems
based on some phase diagrams we have numerically ob-
tained that the structures �B� and �C� in Fig. 3�b� with reflec-
tion symmetry are close in energy to another structures in
intermediate fields, �B� and �C� in Fig. 3�a� with no reflection
symmetry and thus that the crossover between the former
structures competes with the corresponding one between the
latter structures. The former is supported in part by the
nearly straight cylindrical FS, while the corrugation of the
cylindrical FS or a 3D-like FS favors the latter. We stress that
such a competition is absent in the single pairing case in
Sec.III because it is the momentum dependence in Eq. �45�
which induces such a competition between two kinds of
modulated states.

In fact, Fig. 9�a� should be compared with Fig. 7: For
instance, the square lattice near Hc2�0� in Fig. 7 is replaced

in Fig. 9�a� by that of LO type, and the roles of the two kinds
of structures �one with reflection symmetry and the other of
LO type with no reflection symmetry� in intermediate fields
in Fig. 7 are precisely exchanged in Fig. 9�a�. Further, Fig.
9�b� shows that, with increasing ��N�, the region of the trian-
gular lattice in intermediate fields shrinks in contrast to the
strongly anisotropic triangular lattice near Tc, and that the
high-field region above FOST1 in Fig. 9�a� disappears. Con-
sequently, far from Tc, the only stable structure in Fig. 9�b� is
a strongly anisotropic and tilted vortex lattice with no reflec-
tion symmetry. As Fig. 10 show, the vortices in Fig. 9�b�
have cores compressed along the c axis. With decreasing the
field, the tilt angle of the stripes in Fig. 9�b�, which is a
vestige of the FFLO modulation in �A� of Fig. 9�a�, de-
creases. Since the lattice structure there is close to the square
symmetry rather than the hexagonal one, however, an FOST,
just like FOST2 in Fig. 3�a�, inevitably occurs to transform
into the triangular lattice �C�. This example also indicates a

similar role in �̃w to that of �N. We also note that phase
diagrams similar to Fig. 9�b� have been obtained quite often

in our numerical calculations. For instance, even for �̃w
=0.4 which seems to be a value closer to the orbital limiting,
we have obtained the results similar to Fig. 9�b� irrespective
of the used �N value.
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FIG. 9. �Color online� The resulting h-t phase diagrams in the s-wave and p-wave mixed case for �a� �N=0 and �b� �N=−0.1 obtained

in terms of Eq. �60�. The dashed portion of FOST2 is not identified due to a numerical difficulty. The used parameters are J̃=0.35 and �w=5.
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We have not examined a phase diagram for quite a small
��N� interpolating Figs. 9�a� and 9�b�. Based on the above-

mentioned similar roles in �̃w and �N, however, it is valuable
to examine the �N=0 case with a larger s-t mixing than that
in Fig. 9�a�. For this reason, we show such an example in
Fig. 11. It seems, except the presence of FOST4 and FOST5
there, that Fig. 11 interpolates between Figs. 9�a� and 9�b�. In
fact, these two FOSTs are expected to change into crossovers
once �N becomes nonzero, because the roles of even and odd
LLs are exchanged through FOST4 and FOST5, and an
even-odd LL mixing due to a nonzero �N, as in Fig. 3, tends
to change an FOST into a crossover. Therefore, it is natural
to expect that, in the situations interpolating Figs. 9�a� and
9�b�, the intermediate triangular lattices are simply lost with
increasing ��N�.

V. SUMMARY AND DISCUSSION

In this paper, possible vortex lattice structures in noncen-
trosymmetric Rashba superconductors have been studied,
and, as a result of the anisotropic Zeeman effect peculiar to
Rashba superconductors, the vortex structure was found to
change depending on the pairing symmetry. Through our cal-
culations for several model pairing states, three types of se-
quences of field-induced structural crossovers have been
found to appear in superconductors with the ASOC of pure
Rashba type in intermediate fields depending on the value of
a normalized ASOC and on the pairing state: �1� LO-like
structure with no reflection symmetry and a field-induced
rotation of its orientation, �2� striped lattice modulating along
the Q0 direction and its crossover to a compressed square
lattice, and �3� intermediate triangular lattices differing from
the familiar one near Tc and in lower fields. However, the LO
structure occurring in the dx2−y2-pairing case under a field
parallel to the gap nodes is exceptional and has a modulation
parallel to the c-axis and reflection symmetry.

To obtain close correlations between the vortex structure
and pairing symmetry, a detailed analysis taking account of a

more realistic band structure will be necessary. Nevertheless,
based on the numerical study we have performed so far, the
following two conclusions are expected to be unaffected by
refining the starting microscopic model. Below, we focus on
realistic cases with nonvanishing ��N��0.1.

In the case where the s-t mixing is negligible, a modu-
lated state with weak stripes parallel to the c axis or an
anisotropic square vortex lattice is realized in the intermedi-
ate and high-field ranges, depending on the situation, and is
expected to have reflection symmetry. In the presence of ver-
tical line-gap nodes parallel to the c axis, the resulting high-
field state is affected by the gap nodes and may be the LO-
like vortex lattice with stripes perpendicular to the c-axis if
the field is parallel to a gap node.

In the case with a significant amount of s-t mixing, the
paramagnetic depairing effect is reduced irrespective of the
pairing state, leading to an enhancement of Hc2, while the
vortex lattice structure seems to depend on the dimensional-
ity of the Fermi surface: For the 2D-like case in which FS
takes the form of a nearly straight cylinder, the resulting
vortex lattices seem to always have reflection symmetry and
to yield the structural crossover �2� indicated above. In the
case with a more realistic FS such as a corrugated cylinder,
however, the resulting vortex lattice in higher fields has no
reflection symmetry reflecting the crossover �1� suggesting

���

���

�

FIG. 10. Extended views of ��2�z ,x�� on FS2 at �A� �top� and
�C� �bottom� in Fig. 9�b�.
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the presence of the LO-like state in �N→0 limit. These sce-
narios are not satisfied in superconductors with the vertical
line gap-nodes ��c axis� and under a field parallel to a gap
node, where the tilted structures with no reflection symmetry
do not appear, reflecting a pinning of the striped structure via
the gap nodes. Finally, comments relevant to real experi-
ments are in order:

Experimentally, an imaging of a vortex lattice can be
seen, for instance, through neutron scattering measurements.
In such an experiment, however, the structure is detected as a
flux density distribution which, in turn, is determined by a
spatial distribution of the supercurrent. Although we have not
calculated the supercurrent density in the present work, the
resulting flux density is, roughly speaking, proportional to
the summation �a=1,2��a�2 so that the spatial patterns shown
in the figures in the preceding sections are essentially detect-
able.

Among the existing noncentrosymmetric superconduct-
ors, CeRhSi3 �Ref. 16� and CeIrSi3 �Ref. 17� seem to corre-
spond to the case with a negligibly small s-t mixing because
they show significantly reduced Hc2�T� in H�c compared
with that in H �c. If, as in the pairing model proposed
recently,15 the pairing state has no vertical line-gap nodes,
the present results imply that the resulting vortex lattices
should keep reflection symmetry, and that no unusual vortex
dynamics is expected to appear in these materials �see
below�.

By contrast, in CePt3Si, nearly isotropic Hc2 curves25 have
been previously determined experimentally which suggest
that the paramagnetic depairing is weak in this material.
Based on the present results, this implies that its pairing state
has a significant s-t mixing, or that the bare paramagnetic
effect is negligibly weak. If the latter possibility is correct, a
natural guess is that the vortex state will be a conventional
orbital-limited one, which cannot explain the recent interest-
ing observation of an extremely small magnetic decay rate in
CePt3Si in H �a �Ref. 26� without extrinsically assuming the
presence of twin boundaries. On the contrary, if the former
case is valid, and the pairing state has no vertical line-gap
nodes, the resulting vortex lattice has no reflection symmetry
	see Fig. 9�b�
. This suggests the presence of two domains of
vortex lattices in real CePt3Si,27 although the pairing state of
this material is expected to have time reversal symmetry, and
it is possible that the observation in Ref. 26 is intrinsically
explained without invoking28 extrinsic twin boundaries. To
clarify this point, similar magnetic measurements in H �c and
in other Rashba superconductors such as CeRhSi3 and
CeIrSi3 are to be performed.
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